Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale.
نویسندگان
چکیده
The origin of orbital magnetism recently observed in different nanostructured films and particles is discussed as a consequence of spin-orbit coupling. It is shown that contact potentials induced at the thin film surface by broken symmetries, as domain boundaries in self-assembled monolayers, lead to orbital states that in some cases are of large radius. The component of the angular momentum normal to the surface can reach very high values that decrease the total energy by decreasing spin-orbit interaction energy. Intraorbital ferromagnetic spin correlations induce orbital momenta alignment. The estimated values of the magnetic moments per atom are in good agreement with the experimental observations in thiol capped gold films and nanoparticles.
منابع مشابه
Introducing and investigating structural and magnetic properties of ribbons Co68.5-xFe4WxSi16.5B11 (x = 0.8, 2) in amorphous and crystalline states
In this study, for the first time, cobalt base ribbons were made by adding two different amounts of tungsten with Co67.7Fe4W0.8Si16.5B11 and Co66.5Fe4W2 Si16.5B11 compounds by melt spinning in the water. The pattern of X-ray diffraction taken from these ribbons shows that these magnetic ribbons are amorphous. By using thermal analysis curves, taken from the ribbons, crystallization temperature...
متن کاملSynthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles
FePt nanoparticles with thermally stable room-temperature ferromagnetism are investigated. The monodisperse nanoparticles are prepared by chemical synthesis and a salt-matrix annealing technique. Structural and magnetic characterizations confirm the phase transition from the disordered face-centered cubic structure. In this paper, 3 nm FePt nanoparticles are first synthesized by superhydride re...
متن کاملSynthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles
FePt nanoparticles with thermally stable room-temperature ferromagnetism are investigated. The monodisperse nanoparticles are prepared by chemical synthesis and a salt-matrix annealing technique. Structural and magnetic characterizations confirm the phase transition from the disordered face-centered cubic structure. In this paper, 3 nm FePt nanoparticles are first synthesized by superhydride re...
متن کاملInterfacial Symmetry Control of Emergent Ferromagnetism at the Nanoscale.
The emergence of complex new ground states at interfaces has been identified as one of the most promising routes to highly tunable nanoscale materials. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains among the most challenging materials physics problems to date. In particular, generating ferromagnetism localized at the interf...
متن کاملGiant Magnetic Anisotropy of Co, Ru, and Os Adatoms on MgO (001) Surface.
Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I. G. Rau et al., Science 344, 988 (2014)] that an individual Co adatom on a MgO (001) surface has a large MAE of more than 60 meV. More importantly, we predict that a giant MAE up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2006